Help Pete Find His Beat

Skills

  • Use physical objects to control digital animations and sound
  • Use math (you won’t realize you did)
  • Use music (you’ll probably realize you did)

What you get

  • Three ways to help Pete find his beat using micro:bit, MaKey MaKey, and Scratch
  • Loads of supplemental teaching resources for music, coding and Scratch 3.0
A sock-bunny, a micro:bit clipped to a glove, and a MaKey MaKey. These are all the first drafts of my attempts.

Most people don’t know this, but there is a reason Peter Cottontail always came hip-hoppin’ down the bunny trail. 

He was a famous DJ, and he loved to make music. Though the secret to his music lived in his tail.

One day a terrible DJ accident happened and Peter lost his cottontail.

Now he is just known as “Pete who lost his beat.”

Can you help Pete find his beat? 

Part 1  – Make Pete, micro:bit glove, and MaKey MaKey dance pad 

Materials:

Pete: 1 sock, fist-full of stuffing, two rubber bands, and scissors

micro:bit glove: glove, binder clip, micro:bit with battery pack

MaKey MaKey dance pad: 1 file folder, aluminum foil (about the size of half a sheet of computer paper), glue, scissors, MaKey MaKey

First, make Pete.

Pete is a sock bunny.

Pete is just a sock bunny. Follow this tutorial to make your own. If you don’t like this tutorial, search “No sew sock bunny” to find many versions. You can also search “No sew sock animal” to finds lots of other creatures to make with a sock.

Materials: 1 sock, fist-full of stuffing, two rubber bands, and scissors.

Glue a piece of foil onto the bottom of Pete. This will help him to dance on the MaKey MaKey dance pad.

Glue foil onto the bottom of Pete. This is how Pete will complete the circuit on the MaKey MaKey dance pad.

Second, make your micro:bit glove.

Materials: glove, binder clip, micro:bit with battery pack

Clip the micro:bit to a glove with a binder clip. Connect the battery pack and slide it into the glove.

 

A deleted scene from Stranger Things when the micro:bit starts to flash lights and communicate a message from another world. Just kidding.

Get your micro:bit glove ready to control Scratch

Go to this website: https://scratch.mit.edu/microbit

1.) Install “Scratch Link”

2) Install “Scratch micro:bit Hex

 

Third, Make MaKey MaKey Dance Pad 

Materials: 1 file folder, aluminum foil (about the size of half a sheet of computer paper), glue, scissors

It would be fun to redesign this as a bunny trail for Pete to come hip-hoppin’ down. Or the surface of Mars. It’s really up to you

Pete will dance to the left in Scratch when he is in this position.

I gave Pete three moves  on my dance pad, though in the picture above, only move 2 is connected.

  1. When Space Key Pressed
  2. When Left Arrow Pressed
  3. When Right Arrow Pressed

See all three moves on the MaKey MaKey dance pad in action here (video starts immediately with dance moves).

Now you should have a sock animal, micro:bit glove, and MaKey MaKey dance pad.

Part 2 – Coding in Scratch

Open Scratch and add the micro:bit and MaKey MaKey extensions.

 

Choose a stage and sprite that you like. I took a picture of Pete and uploaded him into Scratch to use as my sprite. 

I used this video to help me to remove Pete’s background in Scratch.

Now, help Pete find his beat. Try this code. How else can you help Pete? 

See this code in action with the micro:bit and MaKey MaKey (video starts immediately at code in action).

Have fun! I can’t wait to see how you help Pete to find his beat.  <3 KatieDays

 

Want more with music, coding, and Scratch 3.0 ? Thank you to Jared O’Leary from BootUpPD for sharing these resources with me.

Jumping Game with Music- https://scratch.mit.edu/projects/75311050/

Jumping Game with Sound Effects-https://scratch.mit.edu/projects/78887338/

Toggle Music with a Button-https://docs.google.com/presentation/d/1pLnYS5j_20OrqzVdk5hPMTIip8scpEkaXqo-lCbZKWE/edit?usp=sharing

Create  Music Player-https://docs.google.com/document/d/1vgbzvO_I4vEIEvYxRZehxuLu6c7vt8s5Mr97o1LKq3o/edit?usp=sharing

Make Music with Ten Block Challenge- https://docs.google.com/document/d/16t0p6zIsFabKhmXKaTZSIxs1nxejegQukmz1MjpFt-c/edit?usp=sharing

More resources from Jared himself-                  https://jaredoleary.com/music-coding

Beatbox Machine- https://docs.google.com/document/d/1C0DpoBDRHdbIWs4hcn7g4HjI86Mpjv2U2blGjjFT20k/edit?usp=sharing

This blog post was created from the ideas shared by Colleen Graves and Katie Henry in the two webinars below. 

Let’s Invent! Celebrate Scratch Month with MaKey MaKey and micro:bit!

Let’s Invent! Celebrate Scratch Month Episode Two with MaKey MaKey and micro:bit!

micro:bit maracas with microBlocks

micro:bit maracas with microBlocks

What you get below:

  • materials list

  • sample code

  • extension idea

 

Materials list

  1. microBlocks (free download)

  2. micro:bit  $17.50

  3. mi:sound board from Kitronik $6.50

 

Using microBlocks to program maracas

 

Attaching the speaker with alligator/crocodile clips

I used the mi:sound board from Kitronik

 

Extension idea: Attach your micro:bits to gloves using rubber bands or Velcro. Then, wave your hands around to make music.

 

Get started with micro:bit + Scratch

Get started with micro:bit + Scratch

What you get below:

  • 4 simple activity cards with quick demo videos

1) Move 

 

Activity card created by Scratch Team at MIT

 


2) Tilt 

Activity card created by Scratch Team at MIT

 


3) Shake

Activity card created by Scratch Team at MIT

 


4) Jump

Activity card created by Scratch Team at MIT

 

Face-tracking Flappy Bird Game in Scratch

What you get below:

1. Copy the Code – tells you how to copy the game you see here

2. Hack the Code – gives you ways for students to modify the existing code

3. Teach Students – A suggested instructional sequence for helping students to build their own games from the ground up.

COPY THE CODE

1) Use this link to open Scratch: https://champierre.github.io/scratch3/

2) Click on the “Add extension” icon (bottom left corner)

3) Scroll down and select “Facemesh2Scratch” extension.  Note: It will take a while to open. Your computer will look like it’s locked up, but it isn’t.

4) Download this Scratch code:  https://drive.google.com/file/d/1oBknAF2ihOVd1cYClAh-6mx6CyfTEc9I/view?usp=sharing   (Open the link. Then, right-mouse click on the file and select “download”

5) In Scratch, select: File –>  open, and open the code you downloaded in step 4.  (Be sure to open that code AFTER you do steps 1-3. The Facemesh2Scratch extension has to be open first.)

6) Click the green flag and start playing the game.

Julia Dweck (@giftedtawk on Twitter) does push-ups to play a Flappy Bird game created in Scratch.

HACK THE CODE

Q: How can I speed up the scroll?

A: Increase the speed of the “glide.”

Q: How can teachers suggest students modify the code?

Simple:

  1. Increase speed of the game
  2. Change the Flappy Bird sprite to your favorite character
  3. Reduce distance between the pipes

Intermediate:

  1. Play a sound when the Flappy Bird touches a pipe
  2. Create a score board. Add a point when Flappy Bird makes it through a pipe. Lose a point if Flappy Bird touches a pipe.

Design thinking: 

  1. Create a fun game for others who are in quarantine and not moving as much. How can you help more people move in a fun way? Not everyone can do push-ups. What other kinds of movement can you inspire with your game?

TEACH STUDENTS

Q: What is the easiest way to share code with students?

A: Students need the Facemesh2Scratch extension loaded in Scratch before they open the code linked in the above section “Copy the Code”. Follow steps for “Copy the Code” above to share with students.

Otherwise, consider creating your own instructional sequence. 

STEP ONE  – Students open Facemesh2Scratch  extension in Scratch.

 

1) Use this link to open Scratch: https://champierre.github.io/scratch3/

2) Click on the “Add extension” icon (bottom left corner)

3) Scroll down and select “Facemesh2Scratch” extension.  Note: It will take a while to open. Your computer will look like it’s locked up, but it isn’t.

4) Practice using this code to see what happens.

STEP TWO – Learn to create scrolling sprites.

Does anyone in your class know how to do this? Let them teach others. Students can also use tutorials, such as the one below.

 

STEP THREE – Students identify problems to solve

What problems do your students still need to solve in making their game?

Form interest-based groups around remaining problems using a platform like Flipgrid. Allow students who are trying to solve similar problems to work together. Get the students name their own problems and find people who share similar problems.   Don’t go too fast at this step.  There is a lot of learning in being able to name the problem you are trying to solve. Answer their questions with questions.

Encourage them to:

  1. Name the problem
  2. Identify resources they already know about that could help
  3. Identify resources they wish they had
  4. Ask them how they can obtain the resources that they wish they had.
  5. There will likely be many problems. Ask them to focus on the hardest problem first. 

Places to find resources they will possibly need:

Youtube Scratch tutorials

Scratch community help pages

Identify an expert in the field to reach out to

 

Have fun.

<3

-KatieDays

 

 

Rabbit Draft

Ever since I saw the Little Bot project from Matt Chilbert at BirdBrain Technologies, I’ve day dreamed about using his ideas to make a plushy rabbit toy.

Little Bot – BirdBrain Technologies

But, have you ever tried to mount a motor into toy stuffing? Making a squishy toy that has motors inside isn’t easy. Below is the story of how I tried – and am still trying. I didn’t have directions to follow. I just knew that I wanted a plushy bunny that would “look around” like a real rabbit.

For each idea in this process, I tried lots of other ideas before I moved on to the next idea. Also, sometimes I got on an airplane in between ideas because I travel a lot for work. (Those photos are below, also.)

My goal is to create a simple robot plushy that mimics life-like behavior.  If you have shareable resources on this topic, please email them to me katie@katiedays.com. I’d love to see them (and share them in the next blog post.)

Rabbit Draft

 

This 14 second video has music.

Key Ideas I’ll Try Next Time

  1. Insert electronics from the tail of the bunny, not the head.
  2. Try attaching the head separately and last. This might make for a more emotionally appealing face because you can get the details right before attaching it.
  3. Use fabric that doesn’t shred easily. Felt or wool might be a better option than what you see in my photos. (I used micro felt because it was extra soft. I thought it would move nicely with the micro servos, but it ended up just fraying easily at the edges.)
  4. Try micro servos with plastic gears instead of metal gears to save a few dollars.

Materials You’ll See Below

2 micro servos (plastic gears)

2 micro servos (metal gears)

micro:bit

ring:bit

MicroBlocks

Felt, embroidery floss, needle (any will do)

Eva Foam 10mm thick (You can get Eva Foam at JoAnn fabrics)

Eva Foam 2 mm thick

Stuffed Rabbit Directions

Rabbit Template

(Choose from lots of interesting and free patterns here) 

Cutting knife/cutting mat

Sharpie marker

Here we go

First, I started with a simple cardboard version.  (Hey, it looked like a rabbit to me.) I programmed it in MicroBlocks.

Well, that was easy enough. I put a picture of the MicroBlocks bunny Rosa on the front and called it a day. That was all I had time for before I went to FETC in Miami, Florida for work.

This is a picture of Rosa, the MicroBlocks logo.

 

I love the Banyon trees in Florida. This one grows outside of the Miami Convention Center.

Once I returned from FETC, I had to go to the BETT show in London right away. So, my bunny project waited a few more days.

I met up with Lindsay and Eric from Strawbees at the Bett show. Have you see the new micro:bit powered Strawbees kit? It’s incredible.

 

Once I got back from BETT, I had a new idea to try. I chopped up a memory foam pillow, and made a servo shelf with 2 pieces of 10 mm Eva Foam. The Eva Foam securely held my servos, but the servos weren’t strong enough to move the 2mm black foam (AKA: future bunny face) the way I liked. So, I ordered micro servos with metal gears, thinking they’d be stronger. (This may not have been necessary because the most recent design I’ve used is fairly small and light weight.)

Also, memory foam is difficult to cut without special tools. Of the tools I had available, a bread knife was the best solution.

 

Memory foam cut into a rough bunny shape. Plastic micro servos mounted into a shelf of Eva Foam.

 

Folded foam sheet simulating future bunny face

 

After I tried that idea, I had to pack my suitcases again to go to TCEA in Austin, Texas. TCEA was a strangely green trip.

 

The world is my classroom. At TCEA my classroom number was 437.

 

My Uber driver came in this lime green Dodge Charger.

 

I ordered this breakfast smoothie. After I realized how green it was, I couldn’t NOT take this picture. (Trust me, you would have done it, too.)

Okay, Now We’re Getting Somewhere

Once I got home from TCEA, I spent a lot of time preparing for the class John Maloney and I were teaching at Infosys Winter Pathfinders. We had video meetings most mornings.

John is a great teacher. Here we are playing with MicroBlocks using a micro:bit and a servo.

 

After one of our morning meetings, I started working on the code for my future rabbit. I knew I wanted to use the radio feature of the micro:bit to wirelessly send messages from one micro:bit to another micro:bit, in order to control the servos. Below is the program I wrote.

The top code is the “receiver script.” In this photo the x-axis tilt will control one servo while the y-axis tilt will control the other servo. That means when I tilt the the “sender” micro:bit forward and backward, the rabbit will look down and up. When I tilt the “sender” micro:bit right and left, the rabbit will look right and left.

During the class we taught, I managed to find a few minutes to try making another type of bunny head.

This bunny head was mounted on two servos and moving in interesting ways. I took the servos apart though to give one to a student. I don’t have a video to show you.

Once I got back from Infosys Winter Pathfinders with John, I was ready to dive into my project because I had 8 full days before traveling again.

First

First, I decided that I had a good concept for stabilizing the servos with Eva Foam from the memory foam rabbit.

This is a soft and durable way to stabilize the servo motors, so I decided to keep it. 

Next, I decided it was time to get a real pattern. I knew I wanted a plushy rabbit, so I searched free rabbit patterns.  I chose the pattern below because I thought the servos would fit well in the neck. (I noticed that the distance between the base of the rabbit and it’s neck was similar to the height of my servos stacked on top of each other.) So, I traced the pattern and cut out the shapes from my fabric.

Template here: http://www.creativityinpieces.com/2013/03/07/easter-bunny-template/

 

My printer isn’t working. So, I laid a piece of copy paper on my computer screen and traced the shapes with a pencil.

 

After cutting out the paper shapes, I used the same pencil to trace the shapes onto my fabric. You don’t need anything fancy to trace onto fabric. Unless your fabric is fancy.

 

I made a mirror image of the rabbit because I wanted the “same side” of the rabbit to face outward. One side of this fabric is a bit fuzzier than the other.

 

This is a fairly simple pattern, but I’d like to see if I can make an even simpler one for the next project.

Second

Even though the directions showed me how to stitch these pieces together, I still had to figure out how I was going to insert my motors. I also needed to figure out how I would attach the motors to the rabbit itself.

I used a blanket stitch to connect my pieces. Read how to assemble a non-robot rabbit here: http://www.creativityinpieces.com/2013/03/07/easter-bunny-template/

 

It could be a dinosaur, or a turtle, or a green jello mold.

Third    

Next time I will NOT insert the motor in the front (as I tried here). Next time I will stitch up the front of the rabbit and leave the back open. There are several seams on the front of the rabbit, and trying to stitch them together while holding the motors in place was very tricky. This trickiness combined with the fraying fabric makes the front of my first-draft rabbit pretty raggedy.

The square shelf holding the servo motors was too wide, so I cut it in half.
This is kind of lumpy, but I needed a prototype to see if the height of the motor would move the rabbit’s head and neck.

Here’s what happened. (The black thing sticking out of the side when the head turns is a piece of 2mm foam. You’ll see more about that piece below.)

 

Fourth/ Some Things I Did Next

I stitched up the rest of the rabbit and left the front open for the motors. (As I’ve said, this was a terrible idea. Next time leave the back open for the motors. Also, try fabric that doesn’t fray, like felt or wool.)
I used the 2mm Eva Foam to create a soft form to go inside the rabbit. As you can see this is too big. To create a form that fits inside of the rabbit, I reduced my original rabbit template from 200% to 150% and made the form you see below.

 

I mirrored the front-half of the rabbit body pattern and put the “head top” in the middle. (These are pieces from this template http://www.creativityinpieces.com/2013/03/07/easter-bunny-template/)

 

I slid the form into the rabbit body and saw that it was still too big, so I trimmed it down.
I had to trim this black form down.
This is the final form. Since I was adding material into the body of the rabbit, I needed to reduce the height of my servo base, too.
20 mm high works perfectly for the rabbit neck and head, and the base is still strong enough to keep the motors in place. I chose to keep it long so that it reached into the belly of the rabbit and didn’t somehow flip itself over.

 

See how well it works?

So this is what went inside of the rabbit’s body.

Yes, it’s a bit floppy outside of the rabbit, but once it goes inside, it seems to work okay. There is definitely room for improvement in this form. 

Stitching the rabbit together at this point was difficult. Next time, insert electronics in the back.
A bit raggedy, but still pretty cute
A rabbit with attitude

Programming My Rabbit

Once I sealed my servo motors inside of the rabbit, I didn’t know how exactly they would move. Using MicroBlocks was a good choice for me because I could quickly make changes to my program. I needed to find out how far my rabbit’s head could move without looking crazy, or worse, falling apart.  By using MicroBlocks, I could test in real-time (no waiting for something to download) the range of my servos inside of the rabbit.

Pressing A on the micro:bit causes the rabbit to rest. Pressing B on the micro:bit creates a random rabbit movement. My next step is to make these radio controlled features so that I can remove the wires (as you saw in my example code above.)

Note: I do not have a micro:bit connected to MicroBlocks in this photo. That’s why there isn’t a green circle behind the USB cord icon.

Rabbit Draft

This 14 second video has sound. 

Need More Resources

If you have shareable resources on the topic of simple squishy robots, would you please email them to me, Katie@katiedays.com? I’d like to learn from them and include them in my next blog post.

 

Colour Tower

We have to make safe places for students to take creative risks, and trust students in those places.”

Colour Tower

I remember taking a risk in 6th grade art, though at the time, I didn’t know I was.  Using British English to title my drawing “Colour Tower” made perfect sense to me. I was reading the Chronicles of Narnia at the time, and thought it was cool how the words were spelled differently than I was used to. The word “colour” felt exotic to me – like much more vibrant colors emerged when you spelled it that way.

As soon as my “Colour Tower” was hanging in the hallway at school, the disgusted-sounding taunts began. “Doesn’t Katie know how to spell? That’s stupid.”

I never had a chance to explain myself, and I didn’t want to.  I felt embarrassed and ashamed.   I stopped spelling the word color with the letter U, and my world became a little less bright. For girls, creative risk-taking in middle school can be wildly terrifying.  But, some girls don’t just stop using the letter U to spell new words in middle school – worse things happen. They can stop leaning into their academic talents and using the power of their minds coupled with the power of their hearts.  Their true passions can become secretive and hidden. They sometimes stay locked for years, or never get unlocked at all.  That’s painful.

I think I was one of these middle school girls, too.  How was I ever going to lean into my own talents, when I was obsessed with matching what I saw everyone else doing?  It was easier to conform than to try something new and risk feeling embarrassed.1

How can we help more middle school girls feel confident to take creative risks?

We have to make it less unusual for a middle school girl to do something different from her peers, and that starts with us doing something different for our students. We have to make safe places for students to take creative risks, and trust students in those places.

While I don’t believe tools themselves solve the problems we are talking about, trusting students to take creative risks with tools they may never before have used can have a profound impact on their life.

You don’t always need tools to help inspire confidence, but there are some good ones that can help. They are beginner-friendly and cost as little as $15 per kit, but the possibilities are endless. They rely on students’ minds and hearts to bring them to life.

Learn more: A Low Cost Robotics Kit – Great for Girls

A teacher works on a robot dancer with cardboard, the micro:bit, and MicroBlocks
  1. Having said that, I did want to be a spy in 7th grade. For a while I carried around a bag with a 110 film camera, mirrors for looking around corners, and a notebook. Mostly I did this with my best friend in her forest, but once I brought the bag to school. Although no one knew I was a spy. Because, well, that was the point. []

A Low Cost Robotics Kit – Great for Girls

Inspire Creativity and Confident Risk-Taking with this Low Cost Robotics Kit

WHO

  • Library
  • STEAM/Maker Space
  • Computer Science Education
  • Interdisciplinary
Infosys WinterPathfinders 2020. Class “Art with the BBC micro:bit”  John Maloney, creator of MicroBlocks, and I facilitate workshops like this one with teachers using the tools below.

WHY – Read Colour Tower

Getting Started

micro:bit in front of Microblocks.fun website
MicroBlocks Activity Cards – Free

Why use micro:bit?

The micro:bit is a tiny programmable computer that makes STEM, computer science, and coding easy and fun.  With this one device, students can start taking creative risks in nearly any subject. Check out www.microbit.org for free lesson plans and student project ideas.

Why use MicroBlocks?

MicroBlocks is a small, fast, human friendly programming language specifically designed for tools like the micro:bit.  MicroBlocks is perfect for libraries, maker spaces, and anywhere with lots of people and resources coming and going.

Just plug your micro:bit into your computer,  open MicroBlocks, and click the gear icon to “update firmware”. That’s it.  Double-check to make sure the USB icon has a green circle behind it to show the connection is good. (See it in action below.)

Note: This 16 second video has sound.  

A Little More

You can do a lot with the buttons, sensors, and display built right into the micro:bit, but you can also do more by adding accessories.  The basic:bit is one way to easily add accessories.

Attach your micro:bit to the front of the basic:bit with 5 screws that come with the basic:bit. (See photos below.) Use the same battery pack that came with your micro:bit to power it all. MicroBlocks makes it easy to start programming your basic:bit instantly.

(Note: If it is difficult for your school to order basic:bits from that website above, try this one: https://chicagodist.com/products/elecfreaks-basic-bit-for-micro-bit-three-way-i-o-expansion-mini-version. The price goes up a bit, but the transaction should be smoother.)

micro:bit (top) and basic:bit (bottom)
Attach the micro:bit to the top of the basic:bit using the five screws that come with the basic:bit. Use the battery pack that came with your micro:bit to power it all.
The backside of the micro:bit attached to the basic:bit.

Rainbow Ready

(Note:  If it is difficult for your school to order from that website, try this one https://chicagodist.com/products/neopixel-rainbow-led-strip-and-gvs-conector-10-leds. The price goes up a bit, but the transaction should be smoother.)

micro:bit powered NeoPixel strip, programmed in MicroBlocks

Attach your NeoPixel strip to the basic:bit. The MicroBlocks NeoPixel activity card makes it easy to learn.  Because the basic:bit comes with a piezo speaker built in, try using the sound and NeoPixels together. The MicroBlocks sound  activity card will help you.

Note: This 4 second video has sound.

Puppets

This project was made using the winch and crank build videos at the BirdBrain Technologies Build page. This puppet uses two position servos: one in the eyes and one in the mouth. The MicroBlocks servos activity card makes it easy to get started with servos. Also, this puppet is being powered by the ring:bit instead of the basic:bit.  You can make a puppet with a basic:bit, but the extra battery in the ring:bit will help your puppet last longer.  However, the ring:bit doesn’t have a piezo speaker built in like the basic:bit does.

Note: This 5 second video has sound. 

Everything You Need

Getting Started

A Little More

Rainbow Ready

Puppets

A teacher builds a model bridge with a micro:bit powered servo driving a car back and forth. The project is programmed using MicroBlocks.

 

 

Contact me Katie@katiedays.com with questions.

#moonshotmorocco

Hope Lives in Gobstoppers Left on Your Desk

<6 minute read

 

A role many of us know best is one of consumer, but it’s not our fault.

 

Much of our world was designed for us long before we arrived in it.

 

It seemed important to the folks designing for us to remove unpredictable surprises from their products and services.

 

(Makes sense to me.)

 

Occasionally finding a golden ticket wrapped in a chocolate bar might be cool, but no one wants their microwave to suddenly explode.

 

(A good surprise)

 

 

(A bad surprise)

 

Creators want their consumers to be safe (very important) and happy (who doesn’t want that?).

 

Creators don’t want consumers blaming themselves for something they didn’t have control over.

 

(Wait. Who has control?)

 

Getting things to be predictable is what creators do for consumers.

 

(Again, nothing wrong with safe and happy.)

 

But when creators work with other creators, they solve the unpredictable surprises together.

 

Creativity, spontaneity, serendipity, and hope all arise from unpredictable surprises.

 

(The things that make us human arise in the space of unpredictability.)

 

 

 

 

Hope lives in gobstoppers left on your desk.