Select the feature you want to use in the search filter on the left
Craft a loveable pet from a sock
One way to make a sock bunny:
One way to make a sock bear:
Pay attention to the location of the “heel” of your sock. There is extra fabric there to stuff and shape.This bear uses 1 sock, 4 rubber bands, and I hot glued the top down.
I created the owl by accident. Here is the process of making the owl.
I stuffed the sock with stuffing, and twisted a rubber band around the sock. Then, I added more stuffing, folded the top of the sock down and hot glued the top of the sock in place. You could sew the top of the sock in place if you don’t have hot glue.I drew a wing-shape that I liked onto paper, then cut it out of felt. I cut a total of four wing shapes because it took two wing shapes to make one wing.I sewed the wings together (two wing-shapes per wing) and stuffed them with stuffing. Then, I hot-glued them to the owl (but you could sew them on as well).
Use physical objects to control digital animations and sound
Use math (you won’t realize you did)
Use music (you’ll probably realize you did)
What you get
Three ways to help Pete find his beat using micro:bit, MaKey MaKey, and Scratch
Loads of supplemental teaching resources for music, coding and Scratch 3.0
A sock-bunny, a micro:bit clipped to a glove, and a MaKey MaKey. These are all the first drafts of my attempts.
Most people don’t know this, but there is a reason Peter Cottontail always came hip-hoppin’ down the bunny trail.
He was a famous DJ, and he loved to make music. Though the secret to his music lived in his tail.
One day a terrible DJ accident happened and Peter lost his cottontail.
Now he is just known as “Pete who lost his beat.”
Can you help Pete find his beat?
Part 1 – Make Pete, micro:bit glove, and MaKey MaKey dance pad
Materials:
Pete: 1 sock, fist-full of stuffing, two rubber bands, and scissors
micro:bit glove: glove, binder clip, micro:bit with battery pack
MaKey MaKey dance pad: 1 file folder, aluminum foil (about the size of half a sheet of computer paper), glue, scissors, MaKey MaKey
First, make Pete.
Pete is a sock bunny.
Pete is just a sock bunny. Follow this tutorial to make your own. If you don’t like this tutorial, search “No sew sock bunny” to find many versions. You can also search “No sew sock animal” to finds lots of other creatures to make with a sock.
Materials: 1 sock, fist-full of stuffing, two rubber bands, and scissors.
Glue a piece of foil onto the bottom of Pete. This will help him to dance on the MaKey MaKey dance pad.
Glue foil onto the bottom of Pete. This is how Pete will complete the circuit on the MaKey MaKey dance pad.
Second, make your micro:bit glove.
Materials: glove, binder clip, micro:bit with battery pack
Clip the micro:bit to a glove with a binder clip. Connect the battery pack and slide it into the glove.
A deleted scene from Stranger Things when the micro:bit starts to flash lights and communicate a message from another world. Just kidding.
5) In Scratch, select: File –> open, and open the code you downloaded in step 4. (Be sure to open that code AFTER you do steps 1-3. The Facemesh2Scratch extension has to be open first.)
6) Click the green flag and start playing the game.
Julia Dweck (@giftedtawk on Twitter) does push-ups to play a Flappy Bird game created in Scratch.
HACK THE CODE
Q: How can I speed up the scroll?
A: Increase the speed of the “glide.”
Q: How can teachers suggest students modify the code?
Simple:
Increase speed of the game
Change the Flappy Bird sprite to your favorite character
Reduce distance between the pipes
Intermediate:
Play a sound when the Flappy Bird touches a pipe
Create a score board. Add a point when Flappy Bird makes it through a pipe. Lose a point if Flappy Bird touches a pipe.
Design thinking:
Create a fun game for others who are in quarantine and not moving as much. How can you help more people move in a fun way? Not everyone can do push-ups. What other kinds of movement can you inspire with your game?
TEACH STUDENTS
Q: What is the easiest way to share code with students?
A: Students need the Facemesh2Scratch extension loaded in Scratch before they open the code linked in the above section “Copy the Code”. Follow steps for “Copy the Code” above to share with students.
Otherwise, consider creating your own instructional sequence.
STEP ONE – Students open Facemesh2Scratch extension in Scratch.
2) Click on the “Add extension” icon (bottom left corner)
3) Scroll down and select “Facemesh2Scratch” extension. Note: It will take a while to open. Your computer will look like it’s locked up, but it isn’t.
4) Practice using this code to see what happens.
STEP TWO – Learn to create scrolling sprites.
Does anyone in your class know how to do this? Let them teach others. Students can also use tutorials, such as the one below.
STEP THREE – Students identify problems to solve
What problems do your students still need to solve in making their game?
Form interest-based groups around remaining problems using a platform like Flipgrid. Allow students who are trying to solve similar problems to work together. Get the students name their own problems and find people who share similar problems. Don’t go too fast at this step. There is a lot of learning in being able to name the problem you are trying to solve. Answer their questions with questions.
Encourage them to:
Name the problem
Identify resources they already know about that could help
Identify resources they wish they had
Ask them how they can obtain the resources that they wish they had.
There will likely be many problems. Ask them to focus on the hardest problem first.
Ever since I saw the Little Bot project from Matt Chilbert at BirdBrain Technologies, I’ve day dreamed about using his ideas to make a plushy rabbit toy.
But, have you ever tried to mount a motor into toy stuffing? Making a squishy toy that has motors inside isn’t easy. Below is the story of how I tried – and am still trying. I didn’t have directions to follow. I just knew that I wanted a plushy bunny that would “look around” like a real rabbit.
For each idea in this process, I tried lots of other ideas before I moved on to the next idea. Also, sometimes I got on an airplane in between ideas because I travel a lot for work. (Those photos are below, also.)
My goal is to create a simple robot plushy that mimics life-like behavior. If you have shareable resources on this topic, please email them to me katie@katiedays.com. I’d love to see them (and share them in the next blog post.)
Rabbit Draft
This 14 second video has music.
Key Ideas I’ll Try Next Time
Insert electronics from the tail of the bunny, not the head.
Try attaching the head separately and last. This might make for a more emotionally appealing face because you can get the details right before attaching it.
Use fabric that doesn’t shred easily. Felt or wool might be a better option than what you see in my photos. (I used micro felt because it was extra soft. I thought it would move nicely with the micro servos, but it ended up just fraying easily at the edges.)
Try micro servos with plastic gears instead of metal gears to save a few dollars.
First, I started with a simple cardboard version. (Hey, it looked like a rabbit to me.) I programmed it in MicroBlocks.
Well, that was easy enough. I put a picture of the MicroBlocks bunny Rosa on the front and called it a day. That was all I had time for before I went to FETC in Miami, Florida for work.
This is a picture of Rosa, the MicroBlocks logo.
I love the Banyon trees in Florida. This one grows outside of the Miami Convention Center.
Once I returned from FETC, I had to go to the BETT show in London right away. So, my bunny project waited a few more days.
I met up with Lindsay and Eric from Strawbees at the Bett show. Have you see the new micro:bit powered Strawbees kit? It’s incredible.
Once I got back from BETT, I had a new idea to try. I chopped up a memory foam pillow, and made a servo shelf with 2 pieces of 10 mm Eva Foam. The Eva Foam securely held my servos, but the servos weren’t strong enough to move the 2mm black foam (AKA: future bunny face) the way I liked. So, I ordered micro servos with metal gears, thinking they’d be stronger. (This may not have been necessary because the most recent design I’ve used is fairly small and light weight.)
Also, memory foam is difficult to cut without special tools. Of the tools I had available, a bread knife was the best solution.
Memory foam cut into a rough bunny shape. Plastic micro servos mounted into a shelf of Eva Foam.
Folded foam sheet simulating future bunny face
After I tried that idea, I had to pack my suitcases again to go to TCEA in Austin, Texas. TCEA was a strangely green trip.
The world is my classroom. At TCEA my classroom number was 437.
My Uber driver came in this lime green Dodge Charger.
I ordered this breakfast smoothie. After I realized how green it was, I couldn’t NOT take this picture. (Trust me, you would have done it, too.)
Okay, Now We’re Getting Somewhere
Once I got home from TCEA, I spent a lot of time preparing for the class John Maloney and I were teaching at Infosys Winter Pathfinders. We had video meetings most mornings.
John is a great teacher. Here we are playing with MicroBlocks using a micro:bit and a servo.
After one of our morning meetings, I started working on the code for my future rabbit. I knew I wanted to use the radio feature of the micro:bit to wirelessly send messages from one micro:bit to another micro:bit, in order to control the servos. Below is the program I wrote.
The top code is the “receiver script.” In this photo the x-axis tilt will control one servo while the y-axis tilt will control the other servo. That means when I tilt the the “sender” micro:bit forward and backward, the rabbit will look down and up. When I tilt the “sender” micro:bit right and left, the rabbit will look right and left.
During the class we taught, I managed to find a few minutes to try making another type of bunny head.
This bunny head was mounted on two servos and moving in interesting ways. I took the servos apart though to give one to a student. I don’t have a video to show you.
Once I got back from Infosys Winter Pathfinders with John, I was ready to dive into my project because I had 8 full days before traveling again.
First
First, I decided that I had a good concept for stabilizing the servos with Eva Foam from the memory foam rabbit.
This is a soft and durable way to stabilize the servo motors, so I decided to keep it.
Next, I decided it was time to get a real pattern. I knew I wanted a plushy rabbit, so I searched free rabbit patterns. I chose the pattern below because I thought the servos would fit well in the neck. (I noticed that the distance between the base of the rabbit and it’s neck was similar to the height of my servos stacked on top of each other.) So, I traced the pattern and cut out the shapes from my fabric.
My printer isn’t working. So, I laid a piece of copy paper on my computer screen and traced the shapes with a pencil.
After cutting out the paper shapes, I used the same pencil to trace the shapes onto my fabric. You don’t need anything fancy to trace onto fabric. Unless your fabric is fancy.
I made a mirror image of the rabbit because I wanted the “same side” of the rabbit to face outward. One side of this fabric is a bit fuzzier than the other.
This is a fairly simple pattern, but I’d like to see if I can make an even simpler one for the next project.
Second
Even though the directions showed me how to stitch these pieces together, I still had to figure out how I was going to insert my motors. I also needed to figure out how I would attach the motors to the rabbit itself.
I used a blanket stitch to connect my pieces. Read how to assemble a non-robot rabbit here: http://www.creativityinpieces.com/2013/03/07/easter-bunny-template/
It could be a dinosaur, or a turtle, or a green jello mold.
Third
Next time I will NOT insert the motor in the front (as I tried here). Next time I will stitch up the front of the rabbit and leave the back open. There are several seams on the front of the rabbit, and trying to stitch them together while holding the motors in place was very tricky. This trickiness combined with the fraying fabric makes the front of my first-draft rabbit pretty raggedy.
The square shelf holding the servo motors was too wide, so I cut it in half.This is kind of lumpy, but I needed a prototype to see if the height of the motor would move the rabbit’s head and neck.
Here’s what happened. (The black thing sticking out of the side when the head turns is a piece of 2mm foam. You’ll see more about that piece below.)
Fourth/ Some Things I Did Next
I stitched up the rest of the rabbit and left the front open for the motors. (As I’ve said, this was a terrible idea. Next time leave the back open for the motors. Also, try fabric that doesn’t fray, like felt or wool.)I used the 2mm Eva Foam to create a soft form to go inside the rabbit. As you can see this is too big. To create a form that fits inside of the rabbit, I reduced my original rabbit template from 200% to 150% and made the form you see below.
I mirrored the front-half of the rabbit body pattern and put the “head top” in the middle. (These are pieces from this template http://www.creativityinpieces.com/2013/03/07/easter-bunny-template/)
I slid the form into the rabbit body and saw that it was still too big, so I trimmed it down.I had to trim this black form down.This is the final form. Since I was adding material into the body of the rabbit, I needed to reduce the height of my servo base, too.20 mm high works perfectly for the rabbit neck and head, and the base is still strong enough to keep the motors in place. I chose to keep it long so that it reached into the belly of the rabbit and didn’t somehow flip itself over.
See how well it works?
So this is what went inside of the rabbit’s body.
Yes, it’s a bit floppy outside of the rabbit, but once it goes inside, it seems to work okay. There is definitely room for improvement in this form.
Stitching the rabbit together at this point was difficult. Next time, insert electronics in the back.A bit raggedy, but still pretty cuteA rabbit with attitude
Programming My Rabbit
Once I sealed my servo motors inside of the rabbit, I didn’t know how exactly they would move. Using MicroBlocks was a good choice for me because I could quickly make changes to my program. I needed to find out how far my rabbit’s head could move without looking crazy, or worse, falling apart. By using MicroBlocks, I could test in real-time (no waiting for something to download) the range of my servos inside of the rabbit.
Pressing A on the micro:bit causes the rabbit to rest. Pressing B on the micro:bit creates a random rabbit movement. My next step is to make these radio controlled features so that I can remove the wires (as you saw in my example code above.)
Note: I do not have a micro:bit connected to MicroBlocks in this photo. That’s why there isn’t a green circle behind the USB cord icon.
Rabbit Draft
This 14 second video has sound.
Need More Resources
If you have shareable resources on the topic of simple squishy robots, would you please email them to me, Katie@katiedays.com? I’d like to learn from them and include them in my next blog post.
”We have to make safe places for students to take creative risks, and trust students in those places.”
Colour Tower
I remember taking a risk in 6th grade art, though at the time, I didn’t know I was. Using British English to title my drawing “Colour Tower” made perfect sense to me. I was reading the Chronicles of Narnia at the time, and thought it was cool how the words were spelled differently than I was used to. The word “colour” felt exotic to me – like much more vibrant colors emerged when you spelled it that way.
As soon as my “Colour Tower” was hanging in the hallway at school, the disgusted-sounding taunts began. “Doesn’t Katie know how to spell? That’s stupid.”
I never had a chance to explain myself, and I didn’t want to. I felt embarrassed and ashamed. I stopped spelling the word color with the letter U, and my world became a little less bright. For girls, creative risk-taking in middle school can be wildly terrifying. But, some girls don’t just stop using the letter U to spell new words in middle school – worse things happen. They can stop leaning into their academic talents and using the power of their minds coupled with the power of their hearts. Their true passions can become secretive and hidden. They sometimes stay locked for years, or never get unlocked at all. That’s painful.
I think I was one of these middle school girls, too. How was I ever going to lean into my own talents, when I was obsessed with matching what I saw everyone else doing? It was easier to conform than to try something new and risk feeling embarrassed.1
How can we help more middle school girls feel confident to take creative risks?
We have to make it less unusual for a middle school girl to do something different from her peers, and that starts with us doing something different for our students. We have to make safe places for students to take creative risks, and trust students in those places.
While I don’t believe tools themselves solve the problems we are talking about, trusting students to take creative risks with tools they may never before have used can have a profound impact on their life.
You don’t always need tools to help inspire confidence, but there are some good ones that can help. They are beginner-friendly and cost as little as $15 per kit, but the possibilities are endless. They rely on students’ minds and hearts to bring them to life.
A teacher works on a robot dancer with cardboard, the micro:bit, and MicroBlocks
Having said that, I did want to be a spy in 7th grade. For a while I carried around a bag with a 110 film camera, mirrors for looking around corners, and a notebook. Mostly I did this with my best friend in her forest, but once I brought the bag to school. Although no one knew I was a spy. Because, well, that was the point. [↩]
Inspire Creativity and Confident Risk-Taking with this Low Cost Robotics Kit
WHO
Library
STEAM/Maker Space
Computer Science Education
Interdisciplinary
Infosys WinterPathfinders 2020. Class “Art with the BBC micro:bit” John Maloney, creator of MicroBlocks, and I facilitate workshops like this one with teachers using the tools below.
micro:bit in front of Microblocks.fun websiteMicroBlocks Activity Cards – Free
Why use micro:bit?
The micro:bit is a tiny programmable computer that makes STEM, computer science, and coding easy and fun. With this one device, students can start taking creative risks in nearly any subject. Check out www.microbit.org for free lesson plans and student project ideas.
Why use MicroBlocks?
MicroBlocks is a small, fast, human friendly programming language specifically designed for tools like the micro:bit. MicroBlocks is perfect for libraries, maker spaces, and anywhere with lots of people and resources coming and going.
Just plug your micro:bit into your computer, open MicroBlocks, and click the gear icon to “update firmware”. That’s it. Double-check to make sure the USB icon has a green circle behind it to show the connection is good. (See it in action below.)
You can do a lot with the buttons, sensors, and display built right into the micro:bit, but you can also do more by adding accessories. The basic:bit is one way to easily add accessories.
Attach your micro:bit to the front of the basic:bit with 5 screws that come with the basic:bit. (See photos below.) Use the same battery pack that came with your micro:bit to power it all. MicroBlocks makes it easy to start programming your basic:bit instantly.
micro:bit (top) and basic:bit (bottom)Attach the micro:bit to the top of the basic:bit using the five screws that come with the basic:bit. Use the battery pack that came with your micro:bit to power it all.The backside of the micro:bit attached to the basic:bit.
micro:bit powered NeoPixel strip, programmed in MicroBlocks
Attach your NeoPixel strip to the basic:bit. The MicroBlocks NeoPixel activity card makes it easy to learn. Because the basic:bit comes with a piezo speaker built in, try using the sound and NeoPixels together. The MicroBlocks sound activity card will help you.
This project was made using the winch and crank build videos at the BirdBrain Technologies Build page. This puppet uses two position servos: one in the eyes and one in the mouth. The MicroBlocks servos activity card makes it easy to get started with servos. Also, this puppet is being powered by the ring:bit instead of the basic:bit. You can make a puppet with a basic:bit, but the extra battery in the ring:bit will help your puppet last longer. However, the ring:bit doesn’t have a piezo speaker built in like the basic:bit does.
Add at least one position servo to bring your puppet to life. Consider using a ring:bit instead of a basic:bit to add more power to your puppet (The ring:bit doesn’t have a piezo speaker built in like the basic:bit does.)